

Introduction to fe-safe[®] Durability analysis software for FE models

Jan Granlund

Technical Sales Expert, Simulia EuroNordics

safetechnology.com

- Why do fatigue analysis?
- Why do I need intelligent fatigue analysis software such as fe-safe?
- But isn't all fatigue software the same?
- Do I have to choose between speed and accuracy?
- Do I need to be a fatigue expert?

Why do fatigue analysis?

Why do fatigue analysis...?

The 1950's Comet de Havilland Air Disasters: The cost of fatigue failure

- Three lost aircraft with many lost lives
- Europe lost of the lead in the jet airline industry to the USA for the next 50 years

automatic direction finding (ADF) windows

Jaguar Land Rover Virtual Design Validation Process using fe-safe/TURBOlife

Project Conclusions

- Identified a lower cost alternative material with improved castability leading to *"a multi-million £GBP per annum cost benefit"*
- Provided a near-optimal design at an early stage in the design process by creating a DOE where key parameters were varied and the impact on the manifold life could be assessed
- Confirmed that Jaguar's own target to reduce the number of engine tests from 5 to 1 was realistic and achievable

"High Temperature Fatigue of Engine Components - Virtual Design Validation of Exhaust Manifold", fe-safe UGM 2010, FESI 2009

Agenda

- Why do fatigue analysis?
- Why do I need intelligent fatigue analysis software such as fe-safe?
- But isn't all fatigue software the same?
- Do I have to choose between speed and accuracy?
- Do I need to be a fatigue expert?

The fatigue analysis process

fe-safe Supported Input & Outputs

- Abaqus
- ANSYS
- I-DEAS
- NASTRAN (NEi, NX, MSC, Optistruct)
- Pro/M: Wildfire & Creo
- General .csv

Other Supported Outputs

- Hypermesh
- PATRAN
- FEMVIEW
- CADFIX
- FEMAP

Physical tests are required, but should be done once, at the final stage for validation

Fatigue testing a premature prototype design is:

- Time consuming
- Project time-scales are unpredictable
- Impossible to account for all conditions
- Expensive

Jaguar Land Rover

- Single engine test cost = + £30,000
- Cost benefit of reducing 5 engine tests to 1:

+ £120,000

 Less fuel used = Reduced environmental impact & emissions

Traditional stress based fatigue methods and hand calculations

- Unreliable
- Easy to miss failure locations
- Can't cope with complex loadings and structures
- Very few real fatigue scenarios are simple uniaxial cases

sate techno

Cracks may not start from the points of maximum FEA stress

Cracks may not start from the points of maximum FEA stress

Crack initiation site may depend on the loading sequence

< only low level fatigue loading >

< only high level fatigue loading >

< High level + low level fatigue loading >

safe

Cracks may not start from the points of maximum FEA stress

Crack initiation site may depend on the loading sequence

Simulating Forming Processes in an Oil Pan

Fatigue life contours for a Ford oil-pan (a) excluding and (b) including effects of forming process

The effects of stamping a sheet metal part may reduce the life by a factor of 30 – from 15 years to 6 months

Fatigue Assessment Of An Oilpan Incorporating Manufacturing Effects Hughes A, Draper J, Kemp M 'Engineering Integrity', The Journal of the Engineering Integrity Society, January 2002

Cracks may not start from the points of maximum FEA stress

Crack initiation site may depend on the loading sequence

Manufacturing effects need to be taken into account ۲

With fe-safe you can...

- Optimise design for minimum weight or cost
- Save time and money with 'right first time' prototype testing
- Evaluate different material options
- Study the influence of load uncertainty on fatigue life
- Examine the effect of assembly and manufacturing processes
- Design and validate fatigue test programmes
- Reduce product recalls and warranty costs
- Predict accurate fatigue life quickly and reliably

Agenda

- Why do fatigue analysis?
- Why do I need intelligent fatigue analysis software such as fe-safe?
- But isn't all fatigue software the same?
 - Trust the EXPERTS
 - Comprehensive
 - Accurate
 - Fast
 - Ease of use & flexibility
- Do I have to choose between speed and accuracy?

You can trust *fe-safe*[®] because you can trust the experts in fatigue

- Fatigue is all we do: we specialise in fatigue analysis software and related services and consultancy
- Technical leader in durability: pioneers in modern multiaxial strain based methods
- Technology driven
- Highly qualified, specialist support team
- 60% PhD in technical team
- Over 100 man-years of industrial fatigue experience

You can trust *fe-safe*[®] because you can trust the experts in fatigue

Ford Motor Company

- Test results to crack initiation:
- *Verity*[®] *in fe-safe* fatigue life prediction to crack initiation

Schaeffler Inc.

- Test results to crack initiation:
- *fe-safe* fatigue life prediction to crack initiation:

Eaton Automotive

- Test results to crack initiation:
- fe-safe fatigue life prediction to crack initiation:

60K cycles 67K cycles

0.83 repeats of

0.81 repeats

110K cycles

92K cycles

References:

- 1. Verity in fe-safe Seam Weld Fatigue, Ford Motor Company, fe-safe UGM 2010
- 2. Fatigue Considerations of High Strength Rolling Bearing Steels, Schaeffler Inc, fe-safe UGM 2006
- 3. Predicting Fatigue Life for a Supercharger Torsional Isolator Spring, Eaton Automotive, fe-safe UGM 2008

You can trust *fe-safe*[®] because you can trust the experts in fatigue

safe

technology

Agenda

- Why do fatigue analysis?
- Why do I need intelligent fatigue analysis software such as fe-safe?
- But isn't all fatigue software the same?
 - Trust the EXPERTS
 - Comprehensive
 - Accurate
 - Fast
 - Ease of use & flexibility
- Do I have to choose between speed and accuracy?

©Safe Technology Limited 2013

All fatigue software is not the same

Comprehensive

- Advanced, feature-full technology with many unique, leading edge capabilities
- Specialist add-on modules
- 3 year restructuring plan

Accuracy

- Advanced strain based, multiaxial algorithms are at the core of fe-safe®
- Consistent customer feedback reports excellent correlation
 with test results

Speed

- fe-safe is computationally efficient
- Distributed and Parallel Processing

Ease of Use & Flexibility

- Many default settings and custom settings
- Standard analyses can be saved, batch analysis easily set up
- CMF (Custom Module Framework)

Some capabilities in standard version of fe-safe

- Strain-Life (multi-axial)
- Stress-Life (S-N curve analysis)
- Infinite life (Dang Van)
- Fatigue of cast irons
- Property mapping
- Fatigue of welded joints using BS5400/7608
- Vibration fatigue
- Test programme validation
- Materials database
- Critical Distance Methods

- Automatic hot-spot formation
- Manufacturing effects
- Automatic surface detection
- Automatic surface contact detection
- Vector plots
- Warranty curve
- Signal processing
- Parallel processing
- Component for SIMULIA Isight

We have completed a 3-year software restructuring program:

- New underlying file structure for future developments
- Code re-structured to include parallel and distributed processing
- Custom Module Framework (CMF) 'Plug-in' allows users to add proprietary analysis methods
- Result
 - The code is now easier to develop
 - Some dramatic reduction in analysis times

New materials database

- Database of + 350 materials shipped with *fe-safe* possibly the largest commercial strain-based and stress-based fatigue database
- Public domain data, fully validated, referenced and re-analysed by Safe Technology – a unique data collection
- Equivalent specifications allow searching on US, European, Japanese and Chinese standards unique
- Users can add their own materials and material parameters
- Includes material properties, chemical composition, fatigue properties
- Includes creep fatigue data for fe-safe/TURBOlife
- Includes AFS database of strain-life fatigue properties for cast iron – unique

```
Includes elastomer material data for fe-safe/Rubber
```

General	Name Dataset	Type	Heat-Treatment		Test, Range	
	SAE 1055 Norm carbon steel		Norm + SCA th 690°C			
ame Dataset	SAE 1080 OBT	SAE 1080 QBT carbon steel				
abarial Class	SAE1137 Q&T 600°C carbon free-cutting steel		Q&T 600'C			
ite e cess	SAE1144 Cold Drawn carbon free-oz		COLD DRAWN & STRESS RELIEVED			
pe	SAE1522	carbon manganese steel	As Received			
<= UTS <=	SAE30302 Basquin exponent v low (Ref	 austenitic stainless steel 	QUENCHED FROM 105	dc .	E value calculated from standard formula	
	SAE4140	low alloy engineering steel	Q&T DRAWN AT TEMP			
<= Rp 0.2% <=	SAE4142 Q&T 450'C	low alloy engineering steel	815°C OQT 450°C		7ks/6 33 feeds 43 feeds is 1-1e7 71 feeds is 1-1e7	
4.5.4.	afe	Special	600°C/45°C; H2; Furna	CE		
(*** (*	Armco	Special	Hot Rolled	4		
<= UCS <=	5t 37_1	weldable structural steel plate	650 C/3h stress releve	1		
	DT J/_2	Heidable structural steel plate	600 C/Un stress releve	10	2/ 1655 JE1-JE/	
vt-Treatment	NE24 plate flame out	weidable structural steel plate	As Received		27hete jai ja7	
rostructure	SWSCR POwn	weithin structural steel plate	No readives		A tests	
1 = 10 1 =	5M508 P20mm	weldable structural steel plate			10 tests	
(= HD (=	\$4508 P40mm	weldable structural steel plate			9 tests	
<= HV <=	09G2 steel plate	weldable structural steel plate	Stress relief annealed		12 tests 1e2-1e6	
	St 52-3	weldable structural steel plate	Hot rolled		45 tests le1-le7	
<= HRC <=	SGV49	weldable structural steel plate			7tests 1e3-1e5	
de Drimmer Balla de	HII plate gas cylinder/pressure vessel steel				6tests 1e4-1e6	
<= r000010 h010 <=	a-Fe Normalised	Special	30/920°C AC (normalis	ed)	4tests 1e4-1e6	
	General		Text		Material Akas	
Material Class Steel (Durtle)			Test Desses / Comments	Pierce and and		
Text	Tune validable storebard steal state		Test Cardina	e Real	Common Obit 7100 CaE2	
Material Alias Hannahan and manufad		ma nee pare	Test Conditions	Strein control	German Davizzao Sca	
Chemical Composition Hidros Hardware Hill 455 0			specimen Type & Unentation	nat sneet uniform gauge /xzumm, Gczumm	British BS4560 SUC	
	Vicker's Hardness HV 156.0		Falure Criterion	Cradi initiation	Japanese JDS G3106 5M/90*	
Cyclic Stress-Stram Materials Units Use system default		fault	Revision Number	0		
Strain-Life			Algorithm	BrownMiller:-Morrow		
Cast Iron			Default MSC or FRF	\$DATABASE_DIRgoodman.msc		
Character Sec.			Reference Code	06 (p137)		
Stress-Life Curve			Reference Source	62		
Waker						
Webul	Chemical Composition		Cyclic Stress-Strain		Strain-Life	
	chemical analysis		Ratio Cyclic/Mono 0.2%/S 0.78		Const Amp Endurance Limit (2nf) 2.0E7	
Cbh.	Carbon 0.15					
Creep	Silcon 0.35					
Dana lian	Dang Van Manganese 1.4					
Tavier Phosphorus 0.015						
Taylor Sainhur 0.012						
TURBOL/fe	Croning 0.02					
	Notel 0.01					
	10.0					

fe-safe® - software integration

Design optimisation using Isight

• A dedicated fe-safe component in Isight allows fe-safe to participate in the simulation process workflow

©Safe Technology Limited 2013

All fatigue software is not the same

Comprehensive

- Advanced, feature full technology with many unique, leading edge capabilities
- Specialist add-on modules
- 3 year development plan to future-proof fe-safe

Accuracy

- Advanced strain based, multiaxial algorithms are at the core of fe-safe
- Consistent customer feedback reports excellent correlation
 with test results

Speed

- fe-safe is computationally efficient
- Distributed and Parallel Processing

Ease of Use & Flexibility

- Many default settings and custom settings
- Standard analyses can be saved, batch analysis easily set up
- CMF (Custom Module Framework)

Inaccurate results are unreliable results

 Methods based on assumptions and approximations will produce unreliable results: you never know when they will be wrong

Accurate results allow you to:

- Find the correct fatigue 'hot spots'. If these are not identified correctly, you end up adding material in the wrong places, which results in a heavier component that still isn't designed for optimum durability!
- **Optimize your design for fatigue**: you will know how much the design is overstrength or under-strength at each node, giving you the confidence that you are adding material only where necessary to achieve optimum fatigue life
- Increased confidence that your component will pass tests as "right-firsttime" gained from good correlation with test results

You can trust *fe-safe*[®] because you can trust the experts in fatigue

Ford Motor Company

- Test results to crack initiation:
- *Verity*[®] *in fe-safe* fatigue life prediction to crack initiation

Schaeffler Inc.

- Test results to crack initiation:
- *fe-safe* fatigue life prediction to crack initiation:

Eaton Automotive

- Test results to crack initiation:
- fe-safe fatigue life prediction to crack initiation:

60K cycles 67K cycles

0.83 repeats of

0.81 repeats

110K cycles

92K cycles

References:

- 1. Verity in fe-safe Seam Weld Fatigue, Ford Motor Company, fe-safe UGM 2010
- 2. Fatigue Considerations of High Strength Rolling Bearing Steels, Schaeffler Inc, fe-safe UGM 2006
- 3. Predicting Fatigue Life for a Supercharger Torsional Isolator Spring, Eaton Automotive, fe-safe UGM 2008

You can trust *fe-safe*[®] to give ACCURATE results

Nianzhao Jiang¹, Hui Chen¹, Yong Dai¹, Zhiqing Zhang¹, Kexuan Wang¹, Hongbo Wu¹ Jinping Tao²

¹The Research Institute of Simulation Technology of Nanjing, No. 2 Huangpu Street, Nanjing,210016, P. R. China; ²Ansys-China Shanghai Office. Room 801, Aurora International Building 99 Fucheng Rd. Shanghai,200120, P. R. China

You can trust *fe-safe*[®] to give ACCURATE results

"The conventional uniaxial model can't satisfy the real load applied to the rotor hub.

On the other hand, the expense of testing is high, and the load spectrum of the hub is random.

Testing to all flight conditions is impossible.

For this reason, it is necessary to develop a new way to calculate the fatigue life of the hub".

The 'new way' is to use fe-safe

You can trust *fe-safe*[®] to give ACCURATE results

With the fatigue test and flight-testing of the helicopter the final fatigue life of the rotor hub is

985 hours.

The result of calculating in fe-safe is

934 hours.

- Uniaxial analysis is not valid
- Duty cycle and loading is very complex
- Testing is very expensive and cannot cover all possible usage
- fe-safe gave an accurate life calculation

©Safe Technology Limited 2013

You can trust *fe-safe®* to give FAST results

Comprehensive

- Advanced, feature full technology with many unique, leading edge capabilities
- Specialist add-on modules
- 3 year development plan to future-proof fe-safe

Accuracy

- Advanced strain based, multiaxial algorithms are at the core of fe-safe®
- Consistent customer feedback reports excellent correlation
 with test results

Speed

- fe-safe is computationally efficient
- Distributed and Parallel Processing

Ease of Use & Flexibility

- Many default settings and custom settings
- Standard analyses can be saved, batch analysis easily set up
- CMF (Custom Module Framework)

- Assemblies of different parts, surface finishes and materials can be analysed in a single run
- Contour plots showing the fatigue life at each node, the factor of strength and probabilities of survival can all be calculated in the same run
- Automatic hotspot formation: for rapid design-change studies and design sensitivity analysis
- Native 64 bit code on Windows & Linux
- Parallel Processing (SMP)
 - Threading on multi-core processors
 - Support for multiple cores on a single machine at no additional cost
 - 4 cores typically give 2.5× speed-up
- Distributed Processing (DMP)
 - Distribution of analyses across an HPC or ad-hoc network cluster
 - Scalability is linear

- Assemblies of different parts, surface finishes and materials can be analysed in a single run
- Contour plots showing the fatigue life at each node, the factor of strength and probabilities of survival can all be calculated in the same run
- Automatic hotspot formation: for rapid design-change studies and design sensitivity analysis
- Native 64 bit code on Windows & Linux
- Parallel Processing (SMP)
 - Threading on multi-core processors
 - Support for multiple cores on a single machine at no additional cost
 - 4 cores typically give 2.5× speed-up
- Distributed Processing (DMP)
 - Distribution of analyses across an HPC or ad-hoc network cluster
 - Scalability is linear

Agenda

- Why do fatigue analysis?
- Why do I need intelligent fatigue analysis software such as fe-safe?
- But isn't all fatigue software the same?
- Do I have to choose between speed and accuracy?
- Do I need to be a fatigue expert?

ACCURATE results FAST

- No 'trade-off' between speed and accuracy!
- Unique nodal elimination methods in fe-safe ensure that you get your result quickly and correctly regardless of the complexity of the analysis
- Parallel processing is automatic. Distributed processing is available
- Speed examples shown are using fe-safe 'out-of-the-box' no settings required to force the user to choose between speed of analysis or accuracy of results
- This is not the case with all fatigue software!

Agenda

- Why do fatigue analysis?
- Why do I need intelligent fatigue analysis software such as fe-safe[®]?
- But isn't all fatigue software the same?
- Do I have to choose between speed and accuracy?
- Do I need to be a fatigue expert?

fe-safe® is easy to use

No, you can leave that to us...

- We are not going to tell you that fatigue is simple: there is rarely a 'simple' fatigue scenario
- Most real-life fatigue issues are multi-axial: there are multiple variables which cannot be disregarded if you want truly accurate results
- fe-safe is developed by fatigue experts: it is intelligent
- fe-safe is configured to take into account all the variables that will affect the accuracy of your results *automatically*
- fe-safe GUI is intuitive and easy to use without being 'dumbed down' or oversimplified to the extent that results are simply not accurate and therefore useless
- fe-safe is easy to use for designers and analysts

Not all fatigue software is the same!

- *fe-safe* works 'out-of-the-box'
- Many default settings and intuitive interface
- Automatic selection of the most appropriate algorithm based on the selected material unique
- Standard analyses can be saved, batch analysis easily set up
- *fe-safe* automatically detects complex scenarios such as contact fatigue and changes the fatigue algorithm without user intervention
- Intuitive GUI
- fe-safe is not a "black-box"

"We have found fe-safe[®] to be *very fast, very solid and very easy to use...*" Mercury Marine

Testimonial: Hyundai Motor Company

< only low level fatigue loading >

< only high level fatigue loading >

< High level + low level fatigue loading >

Confidence in *fe-safe*®

Expertise with Specialisation

Fatigue analysis is what we do

• *Reliability* with Accuracy

fe-safe[®] is accurate – we have many case studies from our customers

Innovation with Continuous Development

Driven by the needs of the customers and strong customer and partnership integration

Confidence with Quality of Service

We are happy to share our user feedback, success stories and references